Main idea of DP

STEP 1: Recursively define the value of an optimal solution using solutions of smaller problems (optimal substructure property)

STEP 2: Compute the value of an optimal solution from the smallest to the largest problems
One Dimensional (1D) Dynamic Programming

- Solve problems of minimum size first.
- Store solutions in 1D array.
- Gradually increase problem size.
- Choose the order that you solve problems, so that you re-use solutions of smaller problems stored in the 1D array.

How to gradually increase the problem size:
- If you need to select among a set of n items, order items (sometimes in arbitrary order) and allow selection among the first $1, 2, \ldots, n$ items.
- If you need to solve for an integer amount or length n, gradually solve for $1, 2, \ldots, n$.
1D DP Simple Problems $\Theta(n)$

1. **Fibonacci Numbers $\Theta(n)$**

 \[F(n) = F(n - 1) + F(n - 2), \quad F(1) = 1, \quad F(2) = 2 \]

 \[
 \begin{array}{cccc}
 F(1) & F(2) & \cdots & F(n) \\
 1 & 2 & \cdots & \\
 \end{array}
 \]

2. **Maximum Sum problem $\Theta(n)$**: Given a sequence A of n positive numbers a_1, a_2, \ldots, a_n, find a subset S of A that has the maximum sum, provided that if we select a_i in S, then we cannot select a_{i-1} or a_{i+1}.
 - Let A_i be the subsequence of the first i numbers ($i \leq n$): a_1, a_2, \ldots, a_i
 - Let W_i be the sum of numbers in the optimal solution for A_i.
 - **Recurrence**: $W_i = \max\{W_{i-2} + a_i, \, W_{i-1}\}$

 \[
 \begin{array}{cccc}
 W_1 & W_2 & \cdots & W_n \\
 a_1 & \max(a_1, a_2) & \cdots & \\
 \end{array}
 \]
1D DP More Complex Problems

1. Rod Cutting Problem $\Theta(n^2)$: Given a rod of length n and prices p_i for $i = 1, \ldots, n$, where p_i is the price of a rod of length i, cut the rod in order to maximize the total revenue.
 - r_n is maximum revenue from cutting rod of length n
 - Recurrence: $r_n = \max_{1 \leq i \leq n} \{p_i + r_{n-i}\}$, $r_0 = 0$

2. Minimum number of Coins $\Theta(nk)$: Given amount n and k denominations d_1, \ldots, d_k, find minimum number of coins for amount n
 - Let d_i be the last denomination used
 - Then: $C[n] = 1 + C[n-d_i]$
 - Because after using 1 coin, the amount left is $n-d_i$
 - But I have to consider all possible (k) denominations
 - Recurrence: $C[n] = 1 + \min\{C[n-d_i]\}$, for d_1, \ldots, d_k
1. **Weighted interval scheduling** $\Theta(n \log n)$.
 - Job j starts at s_j, finishes at f_j, and has weight (or value) v_j.
 - Two jobs **compatible** if they don't overlap.
 - **Goal**: find maximum-weight subset of mutually **compatible** jobs.

Sort jobs by finishing time: $f_1 \leq f_2 \leq \cdots \leq f_n$.

- $p(j)$ = largest index $i < j$ such that job i is compatible with job j.
- $V[j]$ = value of optimal solution to the problem on jobs $1, 2, \ldots, j$.
- **Recurrence**: $V[j] = \max\{ v_j + V[p(j)], V[j-1] \}$, $V[0] = 0$

2. **Similar problem**- **Highway Billboards** $\Theta(n \log n)$: Consider a highway from west to east. You can place billboards at locations x_1, x_2, \ldots, x_n. If you place a billboard at x_i, you receive revenue of $r_i > 0$. You wish to place billboards as to maximize your total revenue, subject to the restriction that any two billboards must be at least 5 miles apart.
 - Sort the sites in increasing order of location $\{x_1, x_2, \ldots, x_n\}$
 - Recurrence and algorithm same as Weighted interval scheduling.
Exercise: Longest Monotonically Increasing Subsequence

Give an $O(n^2)$ time dynamic programming algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers, i.e, each successive number in the subsequence is greater than or equal to its predecessor.

For example, if the input sequence is

\[\langle 5, 24, 8, 17, 12, 45 \rangle, \]

the output should be either \(\langle 5, 8, 12, 45 \rangle \) or \(\langle 5, 8, 17, 45 \rangle \).

Solution:

Let $X_i = \langle x_1, \ldots, x_i \rangle$ denote the prefix of X consisting of its first i items.

Define $c[i] =$ the length of the longest increasing subsequence that ends at x_i.

Solution

$c[i] =$ the length of the longest increasing subsequence that ends at x_i.

Initial Condition: $c[1] = 1$

If $i > 1$:

If all items to left of x_i are > than x_i, answer must be 1.

Otherwise, longest increasing subsequence that ends with x_i has form $\langle Z, x_i \rangle$,
where Z is the longest increasing subsequence that ends with x_r for some $r < i$ and $x_r \leq x_i$.

This yields the following recurrence relation:

$$c[i] = \begin{cases}
1 & \text{if } i = 1 \\
1 & \text{if } x_r > x_i \text{ for all } 1 \leq r < i \\
\max_{1 \leq r < i} c[r] + 1 & \text{other cases}
\end{cases}$$
Solution cont.

Store the $c[i]$'s in an array in increasing order of i.

After computing the c array, we run through all the entries to find the maximum value.

This is the length of the longest increasing subsequence in X.

For every i it takes $O(i)$ time to calculate c_i.

$=>$ the running time is $O(\sum_{i=1}^{n} i) = O(n^2)$.

Example

\[
c[i] = \begin{cases}
1 & \text{if } i = 1 \\
1 & \text{if } x_r > x_i \text{ for all } 1 \leq r < i \\
\max_{1 \leq r < i} c[r] + 1 & \text{other cases}
\end{cases}
\]

Question:

The input sequence is \(X = \{4, 5, 7, 1, 3, 9\} \); Find the longest monotonically increasing subsequence.

Solution:

\(i = 1: c[1] = 1 \)
Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$;
Find the longest monotonically increasing subsequence.

Solution:

$i = 1$: $c[1] = 1$

$i = 2$: Since $x_1 \leq x_2 \Rightarrow c[2] = \max\{c[1]\} + 1 = 2$
Example

\[c[i] = \begin{cases}
1 & \text{if } i = 1 \\
1 & \text{if } x_r > x_i \text{ for all } 1 \leq r < i \\
\max_{1 \leq r < i} c[r] + 1 & \text{other cases}
\end{cases} \]

Question:

The input sequence is \(X = \{4, 5, 7, 1, 3, 9\} \);
Find the longest monotonically increasing subsequence.

Solution:

\(i = 1 \): \(c[1] = 1 \)

\(i = 2 \): Since \(x_1 \leq x_2 \) \(\Rightarrow \) \(c[2] = \max\{c[1]\} + 1 = 2 \)

\(i = 3 \): Since \(x_1, x_2 \leq x_3 \) \(\Rightarrow \) \(c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3 \)
Question:

The input sequence is $X = \{4, 5, 7, 1, 3, 9\}$; Find the longest monotonically increasing subsequence.

Solution:

$i = 1$: $c[1] = 1$

$i = 2$: Since $x_1 \leq x_2 \Rightarrow c[2] = \max\{c[1]\} + 1 = 2$

$i = 3$: Since $x_1, x_2 \leq x_3 \Rightarrow c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3$

$i = 4$: Since $x_1, x_2, x_3 > x_4 \Rightarrow c[4] = 1$
Example

\[
c[i] = \begin{cases}
1 & \text{if } i = 1 \\
1 & \text{if } x_r > x_i \text{ for all } 1 \leq r < i \\
\max_{1 \leq r < i} c[r] + 1 & \text{other cases}
\end{cases}
\]

Question:

The input sequence is \(X = \{4, 5, 7, 1, 3, 9\} \);
Find the longest monotonically increasing subsequence.

Solution:

\(i = 1 \): \(c[1] = 1 \)

\(i = 2 \): Since \(x_1 \leq x_2 \) \(\Rightarrow c[2] = \max\{c[1]\} + 1 = 2 \)

\(i = 3 \): Since \(x_1, x_2 \leq x_3 \) \(\Rightarrow c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3 \)

\(i = 4 \): Since \(x_1, x_2, x_3 > x_4 \) \(\Rightarrow c[4] = 1 \)

\(i = 5 \): Since \(x_4 \leq x_5 \) and \(x_1, x_2, x_3 > x_5 \) \(\Rightarrow c[5] = \max\{c[4]\} + 1 = 2 \)
Example

\[c[i] = \begin{cases}
1 & \text{if } i = 1 \\
1 & \text{if } x_r > x_i \text{ for all } 1 \leq r < i \\
\max_{1 \leq r < i} c[r] + 1 & \text{other cases}
\end{cases} \]

Question:

The input sequence is \(X = \{4, 5, 7, 1, 3, 9\} \);
Find the longest monotonically increasing subsequence.

Solution:

\[i = 1: c[1] = 1 \]

\[i = 2: \text{Since } x_1 \leq x_2 \Rightarrow c[2] = \max\{c[1]\} + 1 = 2 \]

\[i = 3: \text{Since } x_1, x_2 \leq x_3 \Rightarrow c[3] = \max\{c[1], c[2]\} + 1 = 2 + 1 = 3 \]

\[i = 4: \text{Since } x_1, x_2, x_3 > x_4 \Rightarrow c[4] = 1 \]

\[i = 5: \text{Since } x_4 \leq x_5 \text{ and } x_1, x_2, x_3 > x_5 \Rightarrow c[5] = \max\{c[4]\} + 1 = 2 \]

\[i = 6: \text{Since } x_1, x_2, x_3, x_4, x_5 \leq x_6 \Rightarrow c[6] = \max\{c[1], c[2], c[3], c[4], c[5]\} + 1 = 4 \]

Return: max is \(c[6] = 4 \)
Solution

\[
c[i] = \begin{cases}
1 & \text{if } i = 1 \\
1 & \text{if } x_r > x_i \text{ for all } 1 \leq r < i \\
\max_{1 \leq r < i} c[r] + 1 & \text{other cases}
\end{cases}
\]

To report optimal subsequence, we need to store for each \(i \), not only \(c[i] \), but also value of \(r \) which achieves the maximum in the recurrence relation.

Denote this by \(r[i] \). (\(\emptyset \) means no predecessor)

Suppose \(c[k] = \max_{1 \leq i \leq n} c[i] \). Let \(S \) be optimal subsequence.

\(x_k \) is the last item in \(S \). the optimal subsequence.

2nd to last item in \(S \) is \(x_{r[k]} \),

3rd to last item in \(S \) is \(x_{r[r[k]]} \), etc.

until we have found all the items in \(S \)

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>c[i]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>r[i]</td>
<td>\emptyset</td>
<td>1</td>
<td>2</td>
<td>\emptyset</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Running time of this step is \(O(n) \), so entire algorithm is still \(O(n^2) \).
Solution

\[c[i] = \begin{cases}
1 & \text{if } i = 1 \\
1 & \text{if } x_r > x_i \text{ for all } 1 \le r < i \\
\max_{1 \le r < i} c[r] + 1 & \text{other cases}
\end{cases} \]

To report optimal subsequence, we need to store for each \(i \), not only \(c[i] \), but also value of \(r \) which achieves the maximum in the recurrence relation.

Denote this by \(r[i] \). (\(\emptyset \) means no predecessor)

Return: max is \(c[6] = 4 \), so \(k = 6 \)

Solution is

\[x[r[r[6]]] \leftarrow x[r[6]] \leftarrow x[r] \leftarrow x_6 \]

i.e. \(x_1 \leftarrow x_2 \leftarrow x_3 \leftarrow x_6 \)

i.e. \{4, 5, 7, 9\}

\[r[6] = 3 \]
\[r[r[6]] = r[3] = 2 \]
\[r[r[r[6]]] = r[2] = 1 \]
\[r[r[r[r[6]]]] = r[1] = \emptyset \]
Alternative Solution

This problem can also be solved using the Longest Common Subsequence (LCS) Algorithm.

Let $X = \langle x_1, \ldots, x_n \rangle$ be the original input.
Set $Y = \langle y, \ldots, y_m \rangle$ be the items from X sorted.

Example: $X = \langle 5, 24, 8, 17, 12, 45, 12 \rangle$, $Y = \langle 5, 8, 12, 12, 17, 24, 45 \rangle$

Then LCS(X, Y) is exactly the Longest Increasing Subsequence of X (why?)
Alternative Solution

This problem can also be solved using the Longest Common Subsequence (LCS) Algorithm

Let \(X = \langle x_1, \ldots, x_n \rangle \) be the original input.
Set \(Y = \langle y, \ldots, y_m \rangle \) be the items from \(X \) sorted.

Example: \(X = \langle 5, 24, 8, 17, 12, 45, 12 \rangle \), \(Y = \langle 5, 8, 12, 12, 17, 24, 45 \rangle \)

Then \(\text{LCS}(X, Y) \) is exactly the Longest Increasing Subsequence of \(X \) (why?)

Since \(\text{LCS}(X, Y) \) uses \(O(n^2) \) time, this new algorithm also uses \(O(n^2) \) time.

Surprisingly, there is also an \(O(n \log n) \) algorithm for solving the problem. See https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf
Two Dimensional (2D) Dynamic Programming

- These problems require a 2D array for the storage of solutions.
- In all the problems, we fill the 2D array row-by-row:
 - That is, first we finish the first row, then the second and so on.
- Usually, but not always, the final solution is at the bottom right corner of the array.
- In all the problems discussed during class, the running time is the same as the array size.
- However, in some cases, we do not need to keep the entire array, as algorithms only require the last two rows.
2D DP 0-1 Knapsack $\Theta(nW)$

1. **Input**: A set of n items, where item i has weight w_i and value v_i, and a knapsack with capacity W.

 Goal: Find $x_1, \ldots, x_n \in \{0, 1\}$ such that $\sum_{i=1}^{n} x_i w_i \leq W$ and $\sum_{i=1}^{n} x_i v_i$ is maximized.

 - $V[i,j]$ be the largest obtained value for a knapsack with capacity j, choosing only from the first i items.

 - **Recurrence**: $V[i,j] = \max(V[i-1,j], v_i + V[i-1,j-w_i])$

 $V[i,j] = 0$ if $i = 0$ or $j = 0$

<table>
<thead>
<tr>
<th>$\mathbf{V[i,j]}$</th>
<th>$j=0$</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$i=1$</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>v_1</td>
</tr>
<tr>
<td>$i=2$</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>$v_1 \text{ or } v_2$</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=n$</td>
<td>0</td>
<td></td>
<td></td>
<td>$V[n-1, W-w_n]$</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>$V[n-1, W]$</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>$V[n, W]$</td>
</tr>
</tbody>
</table>
2D DP Longest Common Subsequence $\Theta (mn)$

Given two sequences $X = (x_1, x_2, \ldots, x_m)$ and $Y = (y_1, y_2, \ldots, y_n)$, Z is a common subsequence of X and Y if Z has a strictly increasing sequence of indices i and j of both X and Y such that we have $x_{i_p} = y_{j_p} = z_p$ for all $p = 1, 2, \ldots, k$. Find the LCS of X and Y.

- $c[i, j]$ is the length of the LCS of $X[1..i]$ and $Y[1..j]$
- **Recurrence:** $c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\max\{c[i - 1, j] + 1, c[i - 1, j - 1] + 1\} & \text{if } x_i = y_j \\
\max\{c[i, j - 1], c[i - 1, j]\} & \text{if } x_i \neq y_j
\end{cases}$
2D DP Longest Common Substring Θ(mn)

Given two strings $X = x_1 x_2 \ldots x_m$ and $Y = y_1 y_2 \ldots y_n$, we wish to find their longest common substring Z, that is, the largest k for which there are indices i and j with $x_i x_{i+1} \ldots x_{i+k-1} = y_j y_{j+1} \ldots y_{j+k-1}$.

- $d[i, j] =$ the length of the longest common substring of $X[1..i]$ and $Y[1..j]$ that ends at x_i and y_j.

Recurrence:

$$d[i, j] = \begin{cases}
 d[i-1, j-1] + 1 & \text{if } x_i = y_j \\
 0 & \text{if } x_i \neq y_j
\end{cases}$$

<table>
<thead>
<tr>
<th></th>
<th>$j=0$</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$i=1$</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>$i=2$</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$i=m$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$i=n$</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

$max d = d[m-1, n-1]$
Find the edit distance between strings $X = x_1x_2 \ldots x_m$ and $Y = y_1y_2 \ldots y_n$. Edit distance is the smallest number of operations to turn X into Y:

1. Insertion: add a letter
2. Deletion: remove a letter
3. Substitution: replace a character with another one.

- $E[i, j] =$ edit distance of $X[1..i]$ and $Y[1..j]$

$$E[i, j] = \min \begin{cases}
1 + E[i, j - 1] \\
1 + E[i - 1, j] \\
E[i - 1, j - 1] & \text{if } x_i = y_j, \text{or } E[i - 1, j - 1] + 1 \text{ if } x_i \neq y_j,
\end{cases}$$
Exercise Max Square Sub-Matrix with all 1s

Given a $n \times m$ binary matrix M filled with 0's and 1's, find the area of the largest square containing all 1's.

Example:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- $S[i][j]$: size of the square sub-matrix with all 1's including $M[i][j]$, where $M[i][j]$ is the right bottom entry in sub-matrix.

Max Square Sub-Matrix with all 1s: Recurrence

- Recurrence:
 - If $M[i][j]$ is 1 then $S[i][j] = \min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1$
 - If $M[i][j]$ is 0 then $S[i][j] = 0$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| | 0 | 1 | 1 | 0 | 1 |
|-----|-----|-----|-----|-----|
| 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 2 | 2 | 0 |
| 1 | 2 | 2 | 3 | 1 |
| 0 | 0 | 0 | 0 | 0 |